Which oxychloride has maximum $pH$
$NaClO$
$NaCl{O_2}$
$NaCl{O_3}$
$NaCl{O_4}$
Derive ${K_a} \times {K_b} = {K_w}$ equation.
The molar conductivity of a solution of a weak acid $HX (0.01\ M )$ is $10$ times smaller than the molar conductivity of a solution of a weak acid $HY (0.10 \ M )$. If $\lambda_{ X }^0 \approx \lambda_{ Y ^{-}}^0$, the difference in their $pK _{ a }$ values, $pK _{ a }( HX )- pK _{ a }( HY )$, is (consider degree of ionization of both acids to be $\ll 1$ )
Assuming that the degree of hydrolysis is small, the $pH$ of $0.1\, M$ solution of sodium acetate $(K_a\, = 1.0\times10^{- 5})$ will be
Which of the following base is weakest
The solubility of a salt of weak acid $( A B )$ at $pH 3$ is $Y \times 10^{-3} mol L ^{-1}$. The value of $Y$ is
. . . . . (Given that the value of solubility product of $A B \left( K _{ sp }\right)=2 \times 10^{-10}$ and the value of ionization constant of $H B \left( K _{ a }\right)=1 \times 10^{-8}$ )