જો $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha + b}\\b&c&{b\alpha + c}\\{a\alpha + b}&{b\alpha + c}&0\end{array}\,} \right| = 0$ તો $a,b,c$ એ . . . .શ્રેણીમાં છે .

  • [IIT 1986]
  • [IIT 1987]
  • A

    સમાંતર

  • B

    સમગુણોતર

  • C

    સ્વરિત

  • D

    એકપણ નહી.

Similar Questions

જો ${a^{ - 1}} + {b^{ - 1}} + {c^{ - 1}} = 0$ આપેલ છે કે જેથી $\left| {\,\begin{array}{*{20}{c}}{1 + a}&1&1\\1&{1 + b}&1\\1&1&{1 + c}\end{array}\,} \right| = \lambda $, તો $\lambda $ ની કિમત મેળવો.

જો $\mathrm{a, b, c}$ સમાંતર શ્રેણીમાં હોય, તો નિશ્ચાયક $\left|\begin{array}{lll}x+2 & x+3 & x+2 a \\ x+3 & x+4 & x+2 b \\ x+4 & x+5 & x+2 c\end{array}\right|$

 $\left| {\begin{array}{*{20}{c}}
  {{{(b + c)}^2}}&{{a^2}}&{{a^2}} \\ 
  {{b^2}}&{{{(a + c)}^2}}&{{b^2}} \\ 
  {{c^2}}&{{c^2}}&{{{(a + b)}^2}} 
\end{array}} \right|$ ની કિમત મેળવો.

$\left| {\,\begin{array}{*{20}{c}}{265}&{240}&{219}\\{240}&{225}&{198}\\{219}&{198}&{181}\end{array}\,} \right|$ =

જો $a,b,c$ એ ધન પૂર્ણાંક હોય , તો $\Delta = \left| {\,\begin{array}{*{20}{c}}{{a^2} + x}&{ab}&{ac}\\{ab}&{{b^2} + x}&{bc}\\{ac}&{bc}&{{c^2} + x}\end{array}\,} \right|$ એ . . . વડે વિભાજ્ય છે.