Gujarati
1.Units, Dimensions and Measurement
normal

The dimension of $\frac{1}{2}$${\varepsilon _0}{E^2}({\varepsilon _0}$: permittivity of free space; $E$: electric field) is

A

$ML{T^{^{ - 1}}}$

B

$M{L^2}{T^{ - 2}}$

C

$M{L^{ - 1}}{T^{ - 2}}$

D

$M{L^2}{T^{ - 1}}$

Solution

(c) Energy density $ = \frac{{{\rm{Energy}}}}{{{\rm{Volume}}}}$ so it’s dimensions are $\frac{{M{L^2}{T^{ – 2}}}}{{{L^3}}} = [M{L^{ – 1}}{T^{ – 2}}]$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.