The dimensional formula $[ML^0T^{-3}]$ is more closely associated with
power
energy
intensity
velocity gradient
Match List $I$ with List $II$
List $I$ | List $II$ |
$(A)$ Young's Modulus $(Y)$ | $(I)$ $\left[ M L ^{-1} T ^{-1}\right]$ |
$(B)$ Co-efficient of Viscosity $(\eta)$ | $(II)$ $\left[ M L ^2 T ^{-1}\right]$ |
$(C)$ Planck's Constant $(h)$ | $(III)$ $\left[ M L ^{-1} T ^{-2}\right]$ |
$(D)$ Work Function $(\phi)$ | $(IV)$ $\left[ M L ^2 T ^{-2}\right]$ |
Choose the correct answer from the options given below:
Dimensional formula of heat energy is
Dimensional formula for angular momentum is
In the relation $y = a\cos (\omega t - kx)$, the dimensional formula for $k$ is
The dimensions of $emf$ in $MKS$ is