- Home
- Standard 11
- Physics
1.Units, Dimensions and Measurement
hard
${e^2}/4\pi {\varepsilon _0}hc$ નું પારિમાણિક સૂત્ર શું થાય?
જ્યાં $e,\,{\varepsilon _0},\,h$ અને $c$ અનુક્રમે વિદ્યુતભાર, પરમિટિવિટી, પ્લાન્ક નો અચળાંક અને પ્રકાશનો વેગ છે.
A$[{M^0}{L^0}{T^0}]$
B$[{M^1}{L^0}{T^0}]$
C$[{M^0}{L^1}{T^0}]$
D$[{M^0}{L^0}{T^1}]$
Solution
(a) $[e] = [AT],$${ \in _0} = [{M^{ – 1}}{L^{ – 3}}{T^4}{A^2}],$ $[h] = [M{L^2}{T^{ – 1}}]$
and $[c] = [L{T^{ – 1}}]$
$\therefore $$\left[ {\frac{{{e^2}}}{{4\pi { \in _0}hc}}} \right] = \left[ {\frac{{{A^2}{T^2}}}{{{M^{ – 1}}{L^{ – 3}}{T^4}{A^2} \times M{L^2}{T^{ – 1}} \times L{T^{ – 1}}}}} \right]$
$ = [{M^0}{L^0}{T^0}]$
and $[c] = [L{T^{ – 1}}]$
$\therefore $$\left[ {\frac{{{e^2}}}{{4\pi { \in _0}hc}}} \right] = \left[ {\frac{{{A^2}{T^2}}}{{{M^{ – 1}}{L^{ – 3}}{T^4}{A^2} \times M{L^2}{T^{ – 1}} \times L{T^{ – 1}}}}} \right]$
$ = [{M^0}{L^0}{T^0}]$
Standard 11
Physics