- Home
- Standard 11
- Physics
The displacement vector of a particle of mass $m$ is given by $\vec r (t)\, = \,A\,\cos \,\omega t\,\hat i\, + \,B\,\sin \,\omega t\,\hat j$.
$(a)$ Show that the trajectory is an ellipse.
$(b)$ Show that $\vec F =-\,m\omega ^2\vec r $.
Solution
Displacement vector $\vec{r}=x \hat{i}+y \hat{j}$
here $\vec{r}=($ Acos $\omega t) \hat{i}+($ Bsin $\omega t) \hat{j}$
Comparing with $\vec{r}=x \hat{i}+y \hat{j}$
$\frac{x}{\mathrm{~A}}=\cos \omega t \quad \frac{y}{\mathrm{~B}}=\sin \omega t$
$\cos ^{2} \omega t+\sin ^{2} \omega t=1$
$\left(\frac{x}{\mathrm{~A}}\right)^{2}+\left(\frac{y}{\mathrm{~B}}\right)^{2}=1$
$\frac{x^{2}}{\mathrm{~A}^{2}}+\frac{y^{2}}{\mathrm{~B}^{2}}=1$
Which is equation of ellipse.
$\therefore$ Trajectory of particle is an ellipse.
$(b)$ Velocity of the particle,
$v =\frac{d r}{d t}=\hat{i} \frac{d}{d t}(\mathrm{~A} \cos \omega t)+\hat{j} \frac{d}{d t}(\mathrm{~B} \sin \omega t)$
$=\hat{i}[\mathrm{~A}(-\sin \omega t) \cdot \omega]+\hat{j}[\mathrm{~B}(\cos \omega t) \cdot \omega]$
$=-\hat{i} \mathrm{~A} \omega \sin \omega t+\hat{j} \mathrm{~B} \omega \cos \omega t$
Acceleration of the particle $(a)$,
$(a)=\frac{d v}{d t}$