अतिपरवलय $x = 8\sec \theta ,\;\;y = 8\tan \theta $ की नियताओं के मध्य दूरी है
$16\sqrt 2 $
$\sqrt 2 $
$8\sqrt 2 $
$4\sqrt 2 $
यदि अतिपरवलय $H : \frac{ x ^2}{ a ^2}-\frac{ y ^2}{ b ^2}=1$ की उत्केन्द्रता $\sqrt{\frac{5}{2}}$ तथा नाभिलम्ब की लम्बाई $6 \sqrt{2}$ है, यदि रेखा $y =2 x + c$, अतिपरवल $H$ पर स्पर्श रेखा है तब $c ^2$ का मान बराबर होगा-
प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए
शीर्ष $(0,\pm 3),$ नाभियाँ $(0,±5)$
अतिपरवलय ${x^2} - 3{y^2} = 2x + 8$ के संयुग्मी अतिपरवलय की उत्केन्द्रता होगी
माना कि $H: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$, जहाँ $a>b>0, x y$ - समतल (plane) में एक ऐसा अतिपरवलय (hyperbola) है जिसका संयुग्मी अक्ष (conjugate axis) $L M$ उसके एक शीर्ष (vertex) $N$ पर $60^{\circ}$ का कोण (angle) अंतरित (subtend) करता है। माना कि त्रिभुज (triangle) $L M N$ का क्षेत्रफल (area) $4 \sqrt{3}$ है।
सूची - $I$ | सूची - $II$ |
$P$ $H$ के संयुग्मी अक्ष की लम्बाई है | $1$ $8$ |
$Q$ $H$ की उत्केन्द्रता (eccentricity) है | $2$ ${\frac{4}{\sqrt{3}}}$ |
$R$ $H$ की नाभियों (foci) के बीच की दूरी है | $3$ ${\frac{2}{\sqrt{3}}}$ |
$S$ $H$ के नाभिलम्ब जीवा (latus rectum) की लम्बाई है | $4$ $4$ |
दिए हुए विकल्पों मे से सही विकल्प है:
प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए
नाभियाँ $(±4,0)$, नाभिलंब जीवा की लंबाई $12$ है।