The domain of $f(x) = \frac{1}{{\sqrt {{{\log }_{\frac{\pi }{4}}}({{\sin }^{ - 1}}x) - 1} }}$,is

  • A

    $\left( { - 1,\frac{1}{{\sqrt 2 }}} \right)$

  • B

    $\left[ {0,\frac{1}{{\sqrt 2 }}} \right)$

  • C

    $\left( {0,\frac{1}{{\sqrt 2 }}} \right)$

  • D

    $\left( { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right)$

Similar Questions

The period of the function $f(x) = \log \cos 2x + \sin 4x$ is :-

For $x\,\, \in \,R\,,x\, \ne \,0,$ let ${f_0}(x) = \frac{1}{{1 - x}}$ and ${f_{n + 1}}(x) = {f_0}({f_n}(x)),$ $n\, = 0,1,2,....$  Then the value of ${f_{100}}(3) + {f_1}\left( {\frac{2}{3}} \right) + {f_2}\left( {\frac{3}{2}} \right)$ is equal to

  • [JEE MAIN 2016]

The value of $\sum \limits_{n=0}^{1947} \frac{1}{2^n+\sqrt{2^{1994}}}$ is equal to

  • [KVPY 2014]

Define a function $f(x)=\frac{16 x^2-96 x+153}{x-3}$ for all real $x \neq 3$. The least positive value of $f(x)$ is

  • [KVPY 2017]

If $f(x) = \sin \log x$, then the value of $f(xy) + f\left( {\frac{x}{y}} \right) - 2f(x).\cos \log y$ is equal to