The domain of $f(x) = \frac{1}{{\sqrt {{{\log }_{\frac{\pi }{4}}}({{\sin }^{ - 1}}x) - 1} }}$,is

  • A

    $\left( { - 1,\frac{1}{{\sqrt 2 }}} \right)$

  • B

    $\left[ {0,\frac{1}{{\sqrt 2 }}} \right)$

  • C

    $\left( {0,\frac{1}{{\sqrt 2 }}} \right)$

  • D

    $\left( { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right)$

Similar Questions

Suppose $f(x) = {(x + 1)^2}$ for $x \ge - 1$. If $g(x)$ is the function whose graph is the reflection of the graph of $f(x)$ with respect to the line $y = x$, then $g(x)$ equals

  • [IIT 2002]

The sentence, What is your Name ? is

The range of $f(x) = [\cos x + \sin x]$ is (Where $[.]$ is $G.I.F.$)

If $f(x) = 2\sin x$, $g(x) = {\cos ^2}x$, then $(f + g)\left( {\frac{\pi }{3}} \right) = $

Let ${f_k}\left( x \right) = \frac{1}{k}\left( {{{\sin }^k}x + {{\cos }^k}x} \right)\;,x \in R$ and $k \ge 1$, then ${f_4}\left( x \right) - {f_6}\left( x \right)$ is equal to

  • [JEE MAIN 2014]