The domain of $f(x) = \frac{1}{{\sqrt {{{\log }_{\frac{\pi }{4}}}({{\sin }^{ - 1}}x) - 1} }}$,is
$\left( { - 1,\frac{1}{{\sqrt 2 }}} \right)$
$\left[ {0,\frac{1}{{\sqrt 2 }}} \right)$
$\left( {0,\frac{1}{{\sqrt 2 }}} \right)$
$\left( { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right)$
Suppose $f(x) = {(x + 1)^2}$ for $x \ge - 1$. If $g(x)$ is the function whose graph is the reflection of the graph of $f(x)$ with respect to the line $y = x$, then $g(x)$ equals
The sentence, What is your Name ? is
The range of $f(x) = [\cos x + \sin x]$ is (Where $[.]$ is $G.I.F.$)
If $f(x) = 2\sin x$, $g(x) = {\cos ^2}x$, then $(f + g)\left( {\frac{\pi }{3}} \right) = $
Let ${f_k}\left( x \right) = \frac{1}{k}\left( {{{\sin }^k}x + {{\cos }^k}x} \right)\;,x \in R$ and $k \ge 1$, then ${f_4}\left( x \right) - {f_6}\left( x \right)$ is equal to