Let $f : R \rightarrow R$ be a function defined by $f ( x )=$ $\log _{\sqrt{m}}\{\sqrt{2}(\sin x-\cos x)+m-2\}$, for some $m$, such that the range of $f$ is $[0,2]$. Then the value of $m$ is $............$

  • [JEE MAIN 2023]
  • A

    $5$

  • B

    $3$

  • C

    $2$

  • D

    $4$

Similar Questions

The value of $\sum \limits_{n=0}^{1947} \frac{1}{2^n+\sqrt{2^{1994}}}$ is equal to

  • [KVPY 2014]

If $f(x) = \frac{{\alpha \,x}}{{x + 1}},\;x \ne - 1$. Then, for what value of $\alpha $ is $f(f(x)) = x$

  • [IIT 2001]

Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a function which satisfies $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y}) \forall \mathrm{x}, \mathrm{y} \in \mathrm{R} .$ If $\mathrm{f}(1)=2$ and $g(n)=\sum \limits_{k=1}^{(n-1)} f(k), n \in N$ then the value of $n,$ for which $\mathrm{g}(\mathrm{n})=20,$ is 

  • [JEE MAIN 2020]

If $f(x) = \frac{x}{{x - 1}}$, then $\frac{{f(a)}}{{f(a + 1)}} = $

Let for $a \ne {a_1} \ne 0,$ $f\left( x \right) = a{x^2} + bx + c\;,g\left( x \right) = {a_1}{x^2} + {b_1}x + {c_1},p\left( x \right) = f\left( x \right) - g\left( x \right),$ If $p\left( x \right) = 0$ only for  $ x=-1 $ and $p\left( { - 2} \right) = 2$ then value of $p\left( 2 \right)$ is

  • [AIEEE 2011]