Let $A=\{a, b, c\}$ and $B=\{1,2,3,4\}$ Then the number of elements in the set $C =\{ f : A \rightarrow B \mid 2 \in f ( A )$ and $f$ is not one-one $\}$ is
$18$
$19$
$17$
$20$
Let $A=\{0,1,2,3,4,5,6,7\} .$ Then the number of bijective functions $f: A \rightarrow A$such that $f(1)+f(2)=3-f(3)$ is equal to $.....$
If $f(x)$ is a polynomial function satisfying the condition $f(x) . f(1/x) = f(x) + f(1/x)$ and $f(2) = 9$ then :
If the range of $f(x) = \frac{2x^2-14x^2-8x+49}{x^4-7x^2-4x+23}$ is ($a, b$], then ($a +b$) is
The maximum value of function $f(x) = \int\limits_0^1 {t\,\sin \,\left( {x + \pi t} \right)} dt,\,x \in \,R$ is
The graph of the function $y = f(x)$ is symmetrical about the line $x = 2$, then