The domain of definition of the function $f (x) = {\log _{\left[ {x + \frac{1}{x}} \right]}}|{x^2} - x - 6|+ ^{16-x}C_{2x-1} + ^{20-3x}P_{2x-5}$  is

Where $[x]$ denotes greatest integer function.

  • A

    $\{2\}$

  • B

    $\left[ {\frac{3}{4},\infty } \right] - \{ 2,\,3\} $

  • C

    $\{2, 3\}$

  • D

    $\left( { - \frac{1}{4},\,\infty } \right)$

Similar Questions

The graph of the function $y = f(x)$ is symmetrical about the line $x = 2$, then

  • [AIEEE 2004]

Let $\quad E_1=\left\{x \in R : x \neq 1\right.$ and $\left.\frac{x}{x-1}>0\right\}$ and $\quad E_2=\left\{x \in E_1: \sin ^{-1}\left(\log _e\left(\frac{x}{x-1}\right)\right)\right.$ is a real number $\}$.

(Here, the inverse trigonometric function $\sin ^{-1} x$ assumes values in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ )

Let $f : E _1 \rightarrow R$ be the function defined by $f(x)=\log _c\left(\frac{x}{x-1}\right)$ and $g: E_2 \rightarrow R$ be the function defined by $g(x)=\sin ^{-1}\left(\log _e\left(\frac{x}{x-1}\right)\right)$

 $LIST I$ $LIST II$
$P$ The range of $f$ is $1$ $\left(-\infty, \frac{1}{1- e }\right] \cup\left[\frac{ e }{ e -1}, \infty\right)$
$Q$ The range of $g$ contains $2$ $(0,1)$
$R$ The domain of $f$ contains $3$ $\left[-\frac{1}{2}, \frac{1}{2}\right]$
$S$ The domain of $g$ is $4$ $(-\infty, 0) \cup(0, \infty)$
  $5$ $\left(-\infty, \frac{ e }{ e -1}\right]$
  $6$ $(-\infty, 0) \cup\left(\frac{1}{2}, \frac{ e }{ e -1}\right]$

The correct option is:

  • [IIT 2018]

The value of $\sum \limits_{n=0}^{1947} \frac{1}{2^n+\sqrt{2^{1994}}}$ is equal to

  • [KVPY 2014]

If $f(x)$ satisfies the relation $f\left( {\frac{{5x - 3y}}{2}} \right)\, = \,\frac{{5f(x) - 3f(y)}}{2}\,\forall x,y\in R$ $f(0) = 1, f '(0) = 2$ then period of $sin \ (f(x))$ is

Let for $a \ne {a_1} \ne 0,$ $f\left( x \right) = a{x^2} + bx + c\;,g\left( x \right) = {a_1}{x^2} + {b_1}x + {c_1},p\left( x \right) = f\left( x \right) - g\left( x \right),$ If $p\left( x \right) = 0$ only for  $ x=-1 $ and $p\left( { - 2} \right) = 2$ then value of $p\left( 2 \right)$ is

  • [AIEEE 2011]