1.Relation and Function
hard

If $f(x)=\frac{\left(\tan 1^{\circ}\right) x+\log _{\varepsilon}(123)}{x \log _{\varepsilon}(1234)-\left(\tan 1^{\circ}\right)}, x > 0$, then the least value of $f(f(x))+f\left(f\left(\frac{4}{x}\right)\right)$ is $...........$.

A

$8$

B

$4$

C

$2$

D

$0$

(JEE MAIN-2023)

Solution

Let $f(x)=\frac{A x+B}{C x-A}$

$f(f(x))=\frac{A\left(\frac{A x+B}{C x-A}\right)+B}{C\left(\frac{A x+B}{C x-A}\right)-A}=x$

$f\left(f\left(\frac{4}{x}\right)\right)=\frac{4}{x}f(f(x))+f\left(f\left(\frac{4}{x}\right)\right)=x+\frac{4}{x} \geq 4(b y A M . \geq G . M .)$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.