The domain of the function $f(x)=\frac{1}{\sqrt{[x]^2-3[x]-10}}$ is (where $[x]$ denotes the greatest integer less than or equal to $x$ )

  • [JEE MAIN 2023]
  • A

    $(-\infty,-2) \cup(5, \infty)$

  • B

    $(-\infty,-3] \cup[6, \infty)$

  • C

    $(-\infty,-2) \cup[6, \infty)$

  • D

    $(-\infty,-3] \cup(5, \infty)$

Similar Questions

Let $f(x) = sin\,x,\,\,g(x) = x.$

Statement $1:$ $f(x)\, \le \,g\,(x)$ for $x$ in $(0,\infty )$

Statement $2:$ $f(x)\, \le \,1$ for $(x)$ in $(0,\infty )$ but $g(x)\,\to \infty$ as $x\,\to \infty$

  • [AIEEE 2012]

Function ${\sin ^{ - 1}}\sqrt x $ is defined in the interval

If $a+\alpha=1, b+\beta=2$ and $\operatorname{af}(x)+\alpha f\left(\frac{1}{x}\right)=b x+\frac{\beta}{x}, x \neq 0,$ then the value of expression $\frac{ f ( x )+ f \left(\frac{1}{ x }\right)}{ x +\frac{1}{ x }}$ is ..... .

  • [JEE MAIN 2021]

Which of the following function is surjective but not injective

Let $P(x)$ be a polynomial with real coefficients such that $P\left(\sin ^2 x\right)=P\left(\cos ^2 x\right)$ for all $x \in[0, \pi / 2)$. Consider the following statements:

$I.$ $P(x)$ is an even function.

$II.$ $P(x)$ can be expressed as a polynomial in $(2 x-1)^2$

$III.$ $P(x)$ is a polynomial of even degree.

Then,

  • [KVPY 2016]