Range of the function $f(x) = \frac{{{x^2}}}{{{x^2} + 1}}$ is

  • A

    $(-1, 0)$

  • B

    $(-1, 1)$

  • C

    $[0, 1)$

  • D

    $(1, 1)$

Similar Questions

Let $R$ be the set of real numbers and $f: R \rightarrow R$ be defined by $f(x)=\frac{\{x\}}{1+[x]^2}$, where $[x]$ is the greatest integer less than or equal to $x$, and $\left\{x{\}}=x-[x]\right.$. Which of the following statements are true?

$I.$ The range of $f$ is a closed interval.

$II.$ $f$ is continuous on $R$.

$III.$ $f$ is one-one on $R$

  • [KVPY 2017]

The set of values of $'a'$ for which the inequality ${x^2} - (a + 2)x - (a + 3) < 0$ is satisfied by atleast one positive real $x$ , is

If $f (x) =$ $\left[ \begin{gathered}  {x^2}\,\,\,\,\,\,\,\,\,\,\,\,if\,\,\,\,x \leqslant \,{x_0} \hfill \\   ax + b\,\,\,\,\,if\,\,\,\,x\, > \,{x_0} \hfill \\ \end{gathered}  \right.$ derivable $\forall \,x\, \in \,R\,\,$ then the values of $a$ and $b$ are respectively

Let $f : R \rightarrow R$ be a function defined by $f ( x )=$ $\log _{\sqrt{m}}\{\sqrt{2}(\sin x-\cos x)+m-2\}$, for some $m$, such that the range of $f$ is $[0,2]$. Then the value of $m$ is $............$

  • [JEE MAIN 2023]

If $f:R \to R$ satisfies $f(x + y) = f(x) + f(y)$, for all $x,\;y \in R$ and $f(1) = 7$, then $\sum\limits_{r = 1}^n {f(r)} $ is

  • [AIEEE 2003]