- Home
- Standard 12
- Mathematics
1.Relation and Function
normal
The domain of the function $f(x) =\frac{{\,\cot^{-1} \,x}}{{\sqrt {{x^2}\,\, - \,\,\left[ {{x^2}} \right]} }}$ , where $[x]$ denotes the greatest integer not greater than $x$, is :
A
$R$
B
$R - \{0\}$
C
$R -\left\{ { \pm \,\sqrt n \,\,:\,\,n\,\, \in \,\,{I^ + }\,\, \cup \,\,\{ 0\} } \right\}$
D
$R - \{n : n \in I\}$
Solution
$x^2 – [x^2] = {x^2} > 0$;
but $0 \le \{y\} < 1 \Rightarrow \{x^2\} \ne 0 $
$\Rightarrow x \ne ± \sqrt n $
Standard 12
Mathematics