Let $f : R \rightarrow R$ be a function such that $f(x)=\frac{x^2+2 x+1}{x^2+1}$. Then
$f(x)$ is many-one in $(-\infty,-1)$
$f(x)$ is many-one in $(1, \infty)$
$f(x)$ is one-one in $[1, \infty)$ but not in $(-\infty, \infty)$
$f ( x )$ is one-one in $(-\infty, \infty)$
The function $f$ satisfies the functional equation $3f(x) + 2f\left( {\frac{{x + 59}}{{x - 1}}} \right) = 10x + 30$ for all real $x \ne 1$. The value of $f(7)$ is
Function $f(x)={\left( {1 + \frac{1}{x}} \right)^x}$ then Domain of $f (x)$ is
A function $f(x)$ is given by $f(x)=\frac{5^{x}}{5^{x}+5}$, then the sum of the series
$f\left(\frac{1}{20}\right)+f\left(\frac{2}{20}\right)+f\left(\frac{3}{20}\right)+\ldots \ldots+f\left(\frac{39}{20}\right)$ is equal to ....... .
Which of the following function is even function
If $a, b$ be two fixed positive integers such that $f(a + x) = b + {[{b^3} + 1 - 3{b^2}f(x) + 3b{\{ f(x)\} ^2} - {\{ f(x)\} ^3}]^{\frac{1}{3}}}$ for all real $x$, then $f(x)$ is a periodic function with period