The value of $b$ and $c$ for which the identity $f(x + 1) - f(x) = 8x + 3$ is satisfied, where $f(x) = b{x^2} + cx + d$, are
$b = 2,\;c = 1$
$b = 4,\;c = - 1$
$b = - 1,\;c = 4$
$b = - 1,\;c = 1$
Let $f$ be a real valued function defined by
$f(x) = sin^{-1} \left( {\frac{{\,\,1 - \,\,\left| x \right|}}{3}} \right) + cos^{-1}\left( {\frac{{\left| x \right|\,\, - \,\,3}}{5}} \right)$ .
Then domain of $f(x)$ is given by :
If for the function $f(x) = \frac{1}{4}{x^2} + bx + 10$ ; $f\left( {12 - x} \right) = f\left( x \right)\,\forall \,x\, \in \,R$ , then the value of $'b'$ is
Range of the function
$f(x) = \sqrt {\left| {{{\sin }^{ - 1}}\left| {\sin x} \right|} \right| - {{\cos }^{ - 1}}\left| {\cos x} \right|} $ is
Let $f (x) = a^x (a > 0)$ be written as $f( x) = f_1( x) + f_2( x)$ , where $f_1( x)$ is an even function and $f_2( x)$ is an odd function. Then $f_1( x + y) + f_1( x - y )$ equals
Let $f: R \rightarrow R$ be a function defined $f(x)=\frac{2 e^{2 x}}{e^{2 x}+\varepsilon}$. Then $f\left(\frac{1}{100}\right)+f\left(\frac{2}{100}\right)+f\left(\frac{3}{100}\right)+\ldots .+f\left(\frac{99}{100}\right)$ is equal to