The value of $b$ and $c$ for which the identity $f(x + 1) - f(x) = 8x + 3$ is satisfied, where $f(x) = b{x^2} + cx + d$, are

  • A

    $b = 2,\;c = 1$

  • B

    $b = 4,\;c = - 1$

  • C

    $b = - 1,\;c = 4$

  • D

    $b = - 1,\;c = 1$

Similar Questions

Which of the following is function

Let $f : R \rightarrow R$ be a continuous function such that $f(3 x)-f(x)=x$. If $f(8)=7$, then $f(14)$ is equal to.

  • [JEE MAIN 2022]

Let $f ( x )$ be a quadratic polynomial with leading coefficient $1$ such that $f(0)=p, p \neq 0$ and $f(1)=\frac{1}{3}$. If the equation $f(x)=0$ and $fofofof (x)=0$ have a common real root, then $f(-3)$ is equal to $........$

  • [JEE MAIN 2022]

If $f (x) =$ $\left[ \begin{gathered}  {x^2}\,\,\,\,\,\,\,\,\,\,\,\,if\,\,\,\,x \leqslant \,{x_0} \hfill \\   ax + b\,\,\,\,\,if\,\,\,\,x\, > \,{x_0} \hfill \\ \end{gathered}  \right.$ derivable $\forall \,x\, \in \,R\,\,$ then the values of $a$ and $b$ are respectively

If the domain of the function $f(\mathrm{x})=\frac{\cos ^{-1} \sqrt{x^{2}-x+1}}{\sqrt{\sin ^{-1}\left(\frac{2 x-1}{2}\right)}}$ is the interval $(\alpha, \beta]$, then $\alpha+\beta$ is equal to:

  • [JEE MAIN 2021]