दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के नाभिलम्ब के सिरों के उत्केन्द्र कोण हैं
${\tan ^{ - 1}}\left( { \pm \frac{{ae}}{b}} \right)$
${\tan ^{ - 1}}\left( { \pm \frac{{be}}{a}} \right)$
${\tan ^{ - 1}}\left( { \pm \frac{b}{{ae}}} \right)$
${\tan ^{ - 1}}\left( { \pm \frac{a}{{be}}} \right)$
मान्रा दीर्घवृत्त $\mathrm{E}: \mathrm{x}^2+9 \mathrm{y}^2=9$ धनात्मक $\mathrm{x}$ तथा $\mathrm{y}$ अक्षों को क्रमशः बिंदुओं $\mathrm{A}$ तथा $\mathrm{B}$ पर काटता है। माना $E$ का दीर्घ अक्ष, वृत्त $C$ का एक व्यास है। माना बिंदुओं $\mathrm{A}$ तथा $\mathrm{B}$ से होकर जाने वाली रेखा, वृत्त $\mathrm{C}$ को बिंदु $\mathrm{P}$ पर मिलती है। यदि, त्रिभुज जिसके शीर्ष $A, P$ तथा मूल बिंदु $O$ हैं, का क्षेत्रफल $\frac{m}{n}$ है, जहाँ $\mathrm{m}$ तथा $\mathrm{n}$ असहभाज्य हैं, तो $\mathrm{m}-\mathrm{n}$ बराबर है
बिन्दु $(4, -3)$ की दीर्घवृत्त $4{x^2} + 5{y^2} = 1$ के सापेक्ष स्थिति है
यदि दीर्घवृत्त के बिन्दु $P$ पर खींचा गया अभिलम्ब दीर्घअक्ष और लुघअक्ष को क्रमश: $G$ तथा $g$ पर काटे तथा $C$ यदि उस दीर्घवृत्त का केन्द्र हो, तो
दीर्घवृत्त का समीकरण जिसकी नाभि $(-1,1)$ है जिसकी नियता $x - y + 3 = 0$ तथा जिसकी उत्केन्द्रता $\frac{1}{2}$ है , होगा
दीर्घवृत्त $5{x^2} + 9{y^2} = 45$ के नाभिलम्ब की लम्बाई है