माना दीर्घवृत्त $9 x^2+4 y^2=36$ पर चार बिंदु $\mathrm{P}\left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), \mathrm{Q}, \mathrm{R}$ तथा $\mathrm{S}$ हैं। माना रेखाखंड $\mathrm{PQ}$ तथा $\mathrm{RS}$ परस्पर लंबवत है तथा मूलबिंदु से होकर जाते हैं। यदि $\frac{1}{(\mathrm{PQ})^2}+\frac{1}{(\mathrm{RS})^2}=\frac{\mathrm{p}}{\mathrm{q}}$, जहाँ $\mathrm{p}$ तथा $q$ असहभाज्य है, तो $\mathrm{p}+\mathrm{q}$ बराबर है :
$143$
$137$
$157$
$147$
मान लीजिए $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,a > b$, एक दीर्घवृत है जिसकी नाभियाँ $F_1$ एवं $F_2$ हैं। $A O$ इसकी अर्धलघु $(semi-minor)$ अक्ष है, और $O$ दीर्घवृत का केंद्र है। रेखाएँ $A F_1$ एवं $A F_2$ को बढ़ाने पर वो दीर्घवृत को पुन: क्रमशः $B$ एवं $C$ बिन्दुओं पर काटती हैं। मान लीजिए कि $A B C$ एक समबाहु त्रिभुज है, तब दीर्घवृत की उत्केन्द्रता निम्न है :
दीर्घवृत्त $25{x^2} + 16{y^2} - 150x - 175 = 0$ की उत्केन्द्रता है
दीर्घवृत्त $5{x^2} + 9{y^2} = 45$ के नाभिलम्ब की लम्बाई है
एक दीर्घवृत्त, जिसकी नाभियाँ $(0,2)$ तथा $(0,-2)$ पर हैं तथा जिसके लघु अक्ष की लम्बई $4$ है, निम्न में से किस बिन्दु से होकर जाता है ?
दीर्वृघत $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ को नाभियो से होकर जाने वाले उस वृत, जिसका केन्द्र $(0,3)$ है, का समीकरण है,