एक दीर्घवृत्त की उत्केन्द्रता $\frac{2}{3}$, नाभिलम्ब $5$ तथा केन्द्र $(0, 0)$ हैं, तो दीर्घवृत्त का समीकरण है
$\frac{{{x^2}}}{{81}} + \frac{{{y^2}}}{{45}} = 1$
$\frac{{4{x^2}}}{{81}} + \frac{{4{y^2}}}{{45}} = 1$
$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$
$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
नाभियाँ $(\pm 3,0), a=4$
दीर्घवृत्त $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{49}} = 1$ के नाभिलम्ब की लम्बाई होगी
दीर्वृघत $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ को नाभियो से होकर जाने वाले उस वृत, जिसका केन्द्र $(0,3)$ है, का समीकरण है,
माना त्रिज्या $4$ का एक वृत्त तथा दीर्घवृत्त $15 \mathrm{x}^2+19 \mathrm{y}^2=285$ संकेन्द्री है, तो उभयनिष्ठ स्पर्श रेखाएँ दीर्घवृत्त के लघु अक्ष से कौन सा कोण बनाती है?ined to the minor axis of the ellipse at the angle.
यदि दीर्घवृत्त $25 x ^2+4 y ^2=1$ पर स्थित बिन्दु $(\alpha, \beta)$ से परवलय $y ^2=4 x$ पर दो स्पर्श रेखायें इस प्रकार खींची जाती है कि एक स्पर्श रेखा की प्रवणता, दूसरी स्पर्श रेखा की प्रवणता की चार गुना है, तो $(10 \alpha+5)^2+\left(16 \beta^2+50\right)^2$ का मान