The eccentricity of an ellipse is $2/3$, latus rectum is $5$ and centre is $(0, 0)$. The equation of the ellipse is

  • A

    $\frac{{{x^2}}}{{81}} + \frac{{{y^2}}}{{45}} = 1$

  • B

    $\frac{{4{x^2}}}{{81}} + \frac{{4{y^2}}}{{45}} = 1$

  • C

    $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$

  • D

    $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$

Similar Questions

Let $f(x)=x^2+9, g(x)=\frac{x}{x-9}$ and $\mathrm{a}=\mathrm{fog}(10), \mathrm{b}=\operatorname{gof}(3)$. If $\mathrm{e}$ and $1$ denote the eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{a}+\frac{y^2}{b}=1$, then $8 e^2+1^2$ is equal to.

  • [JEE MAIN 2024]

Length of common chord of the ellipse ${\frac{{\left( {x - 2} \right)}}{9}^2} + {\frac{{\left( {y + 2} \right)}}{4}^2} = 1$ and the circle ${x^2} + {y^2} - 4x + 2y + 4 = 0$

Let $T_1$ and $T_2$ be two distinct common tangents to the ellipse $E: \frac{x^2}{6}+\frac{y^2}{3}=1$ and the parabola $P: y^2=12 x$. Suppose that the tangent $T_1$ touches $P$ and $E$ at the point $A_1$ and $A_2$, respectively and the tangent $T_2$ touches $P$ and $E$ at the points $A_4$ and $A_3$, respectively. Then which of the following statements is(are) true?

($A$) The area of the quadrilateral $A_1 A _2  A _3 A _4$ is $35$ square units

($B$) The area of the quadrilateral $A_1 A_2 A_3 A_4$ is $36$ square units

($C$) The tangents $T_1$ and $T_2$ meet the $x$-axis at the point $(-3,0)$

($D$) The tangents $T_1$ and $T_2$ meet the $x$-axis at the point $(-6,0)$

  • [AIIMS 2017]

The equation of the tangents drawn at the ends of the major axis of the ellipse $9{x^2} + 5{y^2} - 30y = 0$, are

If $y = mx + c$ is tangent on the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$, then the value of $c$ is