The eccentricity of the conic ${x^2} - 4{y^2} = 1$, is
$\frac{2}{{\sqrt 3 }}$
$\frac{{\sqrt 3 }}{2}$
$\frac{2}{{\sqrt 5 }}$
$\frac{{\sqrt 5 }}{2}$
If a directrix of a hyperbola centered at the origin and passing through the point $(4, -2\sqrt 3)$ is $5x = 4\sqrt 5$ and its eccentricity is $e$, then
Eccentricity of the hyperbola conjugate to the hyperbola $\frac{{{x^2}}}{4} - \frac{{{y^2}}}{{12}} = 1$ is
Let the eccentricity of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ be $\frac{5}{4}$. If the equation of the normal at the point $\left(\frac{8}{\sqrt{5}}, \frac{12}{5}\right)$ on the hyperbola is $8 \sqrt{5} x +\beta y =\lambda$, then $\lambda-\beta$ is equal to
Find the equation of axis of the given hyperbola $\frac{{{x^2}}}{3} - \frac{{{y^2}}}{2} = 1$ which is equally inclined to the axes