The eccentricity of the ellipse ${\left( {\frac{{x - 3}}{y}} \right)^2} + {\left( {1 - \frac{4}{y}} \right)^2} = \frac{1}{9}$ is

  • A

    $\frac{{\sqrt 3 }}{2}$

  • B

    $\frac {1}{9}$

  • C

    $\frac{1}{{\sqrt 3 }}$

  • D

    $\frac {1}{3}$

Similar Questions

If tangents are drawn from point $P(3\ sin\theta + 4\ cos\theta , 3\ cos\theta\ -\ 4\ sin\theta)$ , $\theta = \frac {\pi}{8}$ to the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$ then angle between the tangents is

If the length of the minor axis of ellipse is equal to half of the distance between the foci, then the eccentricity of the ellipse is :

  • [JEE MAIN 2024]

The ellipse ${x^2} + 4{y^2} = 4$ is inscribed in a rectangle aligned with the coordinate axes, which in trun is inscribed in another ellipse that passes through the point $(4,0) $  . Then the equation of the ellipse is :

  • [AIEEE 2009]

Let $P$ be a point on the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$. Let the line passing through $P$ and parallel to $y$-axis meet the circle $x^2+y^2=9$ at point $Q$ such that $P$ and $Q$ are on the same side of the $x$-axis. Then, the eccentricity of the locus of the point $R$ on $P Q$ such that $P R: R Q=4: 3$ as $P$ moves on the ellipse, is :

  • [JEE MAIN 2024]

An ellipse is drawn with major and minor axes of lengths $10 $ and $8$ respectively. Using one focus as centre, a circle is drawn that is tangent to the ellipse, with no part of the circle being outside the ellipse. The radius of the circle is