The eccentricity of the ellipse ${\left( {\frac{{x - 3}}{y}} \right)^2} + {\left( {1 - \frac{4}{y}} \right)^2} = \frac{1}{9}$ is
$\frac{{\sqrt 3 }}{2}$
$\frac {1}{9}$
$\frac{1}{{\sqrt 3 }}$
$\frac {1}{3}$
The equation $\frac{{{x^2}}}{{2 - r}} + \frac{{{y^2}}}{{r - 5}} + 1 = 0$ represents an ellipse, if
The line passing through the extremity $A$ of the major axis and extremity $B$ of the minor axis of the ellipse $x^2+9 y^2=9$ meets its auxiliary circle at the point $M$. Then the area of the triangle with vertices at $A, M$ and the origin $O$ is
A triangle is formed by the tangents at the point $(2,2)$ on the curves $y^2=2 x$ and $x^2+y^2=4 x$, and the line $x+y+2=0$. If $r$ is the radius of its circumcircle, then $r ^2$ is equal to $........$.
Let $S=\left\{(x, y) \in N \times N : 9(x-3)^{2}+16(y-4)^{2} \leq 144\right\}$ and $ T=\left\{(x, y) \in R \times R :(x-7)^{2}+(y-4)^{2} \leq 36\right\}$ Then $n ( S \cap T )$ is equal to $......$
In an ellipse the distance between its foci is $6$ and its minor axis is $8$. Then its eccentricity is