10-2. Parabola, Ellipse, Hyperbola
hard

The locus of the mid point of the line segment joining the point $(4,3)$ and the points on the ellipse $x^{2}+2 y^{2}=4$ is an ellipse with eccentricity

A

$\frac{\sqrt{3}}{2}$

B

$\frac{1}{2 \sqrt{2}}$

C

$\frac{1}{\sqrt{2}}$

D

$\frac{1}{2}$

(JEE MAIN-2022)

Solution

$\frac{ x ^{2}}{4}+\frac{ y ^{2}}{2}=1$

Coordinate of $D$ is

$\left(\frac{2 \cos \theta+4}{2}, \frac{\sqrt{2} \sin \theta+3}{2}\right) \equiv(h, k)$

$\frac{2 h -4}{2}=\cos \theta$

$\frac{2 k -3}{\sqrt{2}}=\sin \theta$

$(i)^{2}+(\text { ii })^{2}$, then we get

$\left(\frac{2 h -4}{2}\right)^{2}+\left(\frac{2 k -3}{\sqrt{2}}\right)^{2}=1 \Rightarrow \frac{( x -2)^{2}}{1}+\frac{\left( y -\frac{3}{2}\right)^{2}}{\left(\frac{1}{2}\right)}=1$

$\therefore \quad$ Required eccentricity is

$e =\sqrt{1-\frac{1}{2}}=\frac{1}{\sqrt{2}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.