10-2. Parabola, Ellipse, Hyperbola
medium

The eccentricity of the hyperbola whose length of the latus rectum is equal to $8$ and the length of its conjugate axis is equal to half of the distance between its foci is :

A

$\frac{2}{{\sqrt 3 }}\;$

B

$\sqrt 3 $

C

$\frac{4}{3}$

D

$\frac{4}{{\sqrt 3 }}$

(JEE MAIN-2016)

Solution

We have $\frac{2 b^{2}}{a}=8$

and $2 b=\frac{1}{2}(2 a e)$

$\therefore \frac{2}{a}\left(\frac{a e}{2}\right)^{2}=8$

$a e^{2}=16–(1)$

Now $\frac{2 b^{2}}{a}=8$

$b^{2}=4 a$

$a^{2}\left(e^{2}-1\right)=4 a$

$a e^{2}-a=4$

Substitute the value of $a e^{2}=16$ in eq $(1)$

$16-a=4$

$-a=4-16$

$-a=-12$

$a=12$

$a e^{2}=16$

$e^{2}=\frac{16}{12}$

$e^{2}=\frac{4}{3}$

$e=\frac{2}{\sqrt{3}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.