એક અતિવલય , જેના નાભિલંબની લંબાઇ $8$ છે તથા જેના અનુબદ્વ અક્ષની લંબાઇ તેની નાભિઓ વચ્ચેના અંતરની અડધી છે,તો ઉકેન્દ્રતા . . . . છે.
$\frac{2}{{\sqrt 3 }}\;$
$\sqrt 3 $
$\frac{4}{3}$
$\frac{4}{{\sqrt 3 }}$
બે અતિવલયો $\frac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}\,\, - \,\,\frac{{{y^2}}}{{{b^2}}}\, = \,\,1\,$ અને $\frac{{{y^2}}}{{{a^2}}}\,\, - \,\,\frac{{{x^2}}}{{{b^2}}}\,\, = \,\,1$ ના સામાન્ય સ્પર્શકોનું સમીકરણ .......
રેખા ${\text{2x}}\,\, + \;\,\sqrt {\text{6}} y\,\, = \,\,2$ એ વક્ર $\,{x^2}\, - \,\,2{y^2}\,\, = \,\,4\,\,$ ને કયા બિંદુ આગળ સ્પર્શે છે?
એક અતિવલયની મુખ્ય અક્ષની લંબાઇ $\sqrt{2}$ છે તથા અતિવલય અને ઉપવલય $3 x^{2}+4 y^{2}=12$ બંનેની નાભી સરખી હોય તો નીચેનામાંથી ક્યાં બિંદુમાંથી અતિવલય પસાર ન થાય
ધારો કે $P \left(x_0, y_0\right)$ એ અતિવલય $3 x^2-4 y^2=36$ પર નું રેખા. $3 x+2 y=1$ થી સૌથી નજીકનું બિંદુ છે.$\sqrt{2}\left(y_0-x_0\right)=..............$
જે અતિવલયનો નાભિલંબ $8$ હોય અને અનુબદ્ધ અક્ષ નાભિઓ વચ્ચેનાં અંતર કરતાં અડધી હોય, તેવા અતિવલયની ઉત્કેન્દ્રતા મેળવો.