Gujarati
10-2. Parabola, Ellipse, Hyperbola
normal

The line $y = mx + c$ touches the curve $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, if

A

${c^2} = {a^2}{m^2} + {b^2}$

B

${c^2} = {a^2}{m^2} - {b^2}$

C

${c^2} = {b^2}{m^2} - {a^2}$

D

${a^2} = {b^2}{m^2} + {c^2}$

Solution

(b) $y = mx + c$ touches the curve $\frac{{{x^2}}}{{{a^2}}} – \frac{{{y^2}}}{{{b^2}}} = 1$,

if ${c^2} = {a^2}{m^2} – {b^2}.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.