- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
The line $y = mx + c$ touches the curve $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, if
A
${c^2} = {a^2}{m^2} + {b^2}$
B
${c^2} = {a^2}{m^2} - {b^2}$
C
${c^2} = {b^2}{m^2} - {a^2}$
D
${a^2} = {b^2}{m^2} + {c^2}$
Solution
(b) $y = mx + c$ touches the curve $\frac{{{x^2}}}{{{a^2}}} – \frac{{{y^2}}}{{{b^2}}} = 1$,
if ${c^2} = {a^2}{m^2} – {b^2}.$
Standard 11
Mathematics