The electric field at a distance $\frac{3R}{2}$ from the centre of a charged conducting spherical shell of radius $R$ is $E.$ The electric field at a distance $\frac{R}{2}$ from the centre of the sphere is 

  • [AIPMT 2010]
  • A

    $\frac{E}{2}$

  • B

    $E$

  • C

    $\frac{E}{3}$

  • D

    Zero

Similar Questions

Consider a sphere of radius $R$ with charge density distributed as :

$\rho(r) =k r$,    $r \leq R $

           $=0$ for  $r> R$.

$(a)$ Find the electric field at all points $r$.

$(b)$ Suppose the total charge on the sphere is $2e$ where e is the electron charge. Where can two protons be embedded such that the force on each of them is zero. Assume that the introduction of the proton does not alter the negative charge distribution.

According to Gauss’ Theorem, electric field of an infinitely long straight wire is proportional to

Two infinitely long parallel conducting plates having surface charge densities $ + \sigma $ and $ - \sigma $ respectively, are separated by a small distance. The medium between the plates is vacuum. If ${\varepsilon _0}$ is the dielectric permittivity of vacuum, then the electric field in the region between the plates is

  • [AIIMS 2005]

A thin infinite sheet charge and an infinite line charge of respective charge densities $+\sigma$ and $+\lambda$ are placed parallel at $5\,m$ distance from each other. Points $P$ and $Q$, are at $\frac{3}{\pi} m$ and $\frac{4}{\pi} m$ perpendicular distance from line charge towards sheet charge, respectively. $E_P$ and $E_Q$ are the magnitudes of resultant electric field intensities at point $P$ and $Q$, respectively. If $\frac{E_p}{E_Q}=\frac{4}{a}$ for $2|\sigma|=|\lambda|$. Then the value of $a$ is ...........

  • [JEE MAIN 2023]

A hollow charged conductor has a tiny hole cut into its surface. Show that the electric field in the hole is $\left(\sigma / 2 \varepsilon_{0}\right) \hat{ n },$ where $\hat{ n }$ is the unit vector in the outward normal direction, and $\sigma$ is the surface charge density near the hole.