The electric field in a plane electromagnetic wave is given by
$\overrightarrow{{E}}=200 \cos \left[\left(\frac{0.5 \times 10^{3}}{{m}}\right) {x}-\left(1.5 \times 10^{11} \frac{{rad}}{{s}} \times {t}\right)\right] \frac{{V}}{{m}} \hat{{j}}$
If this wave falls normally on a perfectly reflecting surface having an area of $100 \;{cm}^{2}$. If the radiation pressure exerted by the $E.M.$ wave on the surface during a $10\, minute$ exposure is $\frac{{x}}{10^{9}} \frac{{N}}{{m}^{2}}$. Find the value of ${x}$.
$254$
$354$
$154$
$54$
For the plane electromagnetic wave given by $\mathrm{E}=\mathrm{E}_0 \sin (\omega \mathrm{t}-\mathrm{kx})$ and $\mathrm{B}=\mathrm{B}_0 \sin (\omega \mathrm{t}-\mathrm{kx})$, the ratio of average electric energy density to average magnetic energy density is
Write equation of energy density of electromagnetic waves.
In an electromagnetic wave, the electric and magnetising fields are $100\,V\,{m^{ - 1}}$ and $0.265\,A\,{m^{ - 1}}$. The maximum energy flow is.......$W/{m^2}$
The magnetic field of a plane electromagnetic Wave is $\overrightarrow{ B }=3 \times 10^{-8} \sin [200 \pi( y + ct )] \hat{ i }\, T$ Where $c=3 \times 10^{8} \,ms ^{-1}$ is the speed of light. The corresponding electric field is
The electric field part of an electromagnetic wave in a medium is represented by
$E_x=0, E_y=2.5 \frac{N}{C}\, cos\,\left[ {\left( {2\pi \;\times\;{{10}^6}\;\frac{{rad}}{s}\;\;} \right)t - \left( {\pi \;\times\;{{10}^{ - 2}}\;\frac{{rad}}{m}} \right)x} \right]$,and $ E_z=0$ . The wave is