The electric field in a plane electromagnetic wave is given by

$\overrightarrow{{E}}=200 \cos \left[\left(\frac{0.5 \times 10^{3}}{{m}}\right) {x}-\left(1.5 \times 10^{11} \frac{{rad}}{{s}} \times {t}\right)\right] \frac{{V}}{{m}} \hat{{j}}$

If this wave falls normally on a perfectly reflecting surface having an area of $100 \;{cm}^{2}$. If the radiation pressure exerted by the $E.M.$ wave on the surface during a $10\, minute$ exposure is $\frac{{x}}{10^{9}} \frac{{N}}{{m}^{2}}$. Find the value of ${x}$.

  • [JEE MAIN 2021]
  • A

    $254$

  • B

    $354$

  • C

    $154$

  • D

    $54$

Similar Questions

For the plane electromagnetic wave given by $\mathrm{E}=\mathrm{E}_0 \sin (\omega \mathrm{t}-\mathrm{kx})$ and $\mathrm{B}=\mathrm{B}_0 \sin (\omega \mathrm{t}-\mathrm{kx})$, the ratio of average electric energy density to average magnetic energy density is

  • [JEE MAIN 2023]

Write equation of energy density of electromagnetic waves.

In an electromagnetic wave, the electric and magnetising fields are $100\,V\,{m^{ - 1}}$ and $0.265\,A\,{m^{ - 1}}$. The maximum energy flow is.......$W/{m^2}$

The magnetic field of a plane electromagnetic Wave is $\overrightarrow{ B }=3 \times 10^{-8} \sin [200 \pi( y + ct )] \hat{ i }\, T$ Where $c=3 \times 10^{8} \,ms ^{-1}$ is the speed of light. The corresponding electric field is

  • [JEE MAIN 2020]

The electric field part of an electromagnetic wave in a medium is represented by

$E_x=0, E_y=2.5 \frac{N}{C}\, cos\,\left[ {\left( {2\pi \;\times\;{{10}^6}\;\frac{{rad}}{s}\;\;} \right)t - \left( {\pi \;\times\;{{10}^{ - 2}}\;\frac{{rad}}{m}} \right)x} \right]$,and  $ E_z=0$ . The wave is

  • [AIPMT 2009]