एकसमान पृष्ठ आवेश घनत्व $\sigma $ वाले चालक पृष्ठ के निकट वैद्युत क्षेत्र
$\frac{\sigma }{{{\varepsilon _0}}}$ होता है और पृष्ठ के समान्तर होता है
$\frac{{2\sigma }}{{{\varepsilon _0}}}$ होता है और पृृष्ठ के समान्तर होता है
$\frac{\sigma }{{{\varepsilon _0}}}$ होता है और पृष्ठ के अभिलम्बवत् होता है
$\frac{{2\sigma }}{{{\varepsilon _0}}}$ होता है और पृष्ठ के अभिलम्बवत् होता है
चित्र में दर्शाए अनुसार एक धनात्मक आवेश $q$ को एक अनावेशित खोखले बेलनाकार चालक कोश (neutral hollow cylindrical conducting shell) के केंद्र पर रखा गया है । निम्नांकित में से कौन-सा चित्र बेलन की सतहों पर प्रेरित आवेशों को सही निरूपित करता है। (बेलन के किलारों के प्रभाव को अनदेखा कीजिए)
चार धात्विक चालकों की निम्न आकृतियाँ हैं
$1.$ गोला $2.$ बेलन
$3.$ नाशपाती आकार $3.$ तड़ित चालक
यदि इन्हें एक कुचालक आधार पर रखकर आवेशित किया जाये तो किस पर लम्बे समय तक आवेश रहेगा
$R$ एवं $2 R$ त्रिज्याओं वाले दो विलगित ठोस धात्विक गोलो को इस प्रकार आवेशित किया जाता है, कि दोनों का आवेश घनत्व $\sigma$ है। इसकें बाद गोलो को किसी पतले चालक तार द्वारा जोड़ा जाता है। माना बड़े गोले पर नया आवेश घनत्व $\sigma^{\prime}$ है, तो अनुपात $\frac{\sigma^{\prime}}{\sigma}$ होगा :
ताँबे तथा एल्यूमीनियम के दो एकसमान चालक एकसमान विद्युत क्षेत्र में रखे हैं। ऐल्यूमीनियम पर प्रेरित आवेश का परिमाण होगा
$5\, cm$ एवं $10\, cm$ त्रिज्यायों वाले दो चालक गोले हैं। इनमें से प्रत्येक को का आवेश देकर इनको एक चालक तार द्वारा जोड़ दिया जाता है। जोड़ने के पश्चात् छोटे गोले पर आवेश ......$\mu C$ होगा