- Home
- Standard 12
- Physics
The electric field of a plane electromagnetic wave varies with time of amplitude $2\, Vm^{-1}$ propagating along $z$ -axis. The average energy density of the magnetic field (in $J\, m^{-3}$) is
$13.29 \times 10^{-12}$
$8.86 \times 10^{-12}$
$17.72 \times 10^{-12}$
$4.43 \times 10^{-12}$
Solution
Amplitude of electric field and magnetic field are related by the relation
$\frac{E_{0}}{B_{0}}=c$
Average energy density of the magnetic field is
$\mathrm{u}_{\mathrm{B}} =\frac{1}{4} \frac{\mathrm{B}_{0}^{2}}{\mu_{0}} $
$=\frac{1}{4} \frac{\mathrm{E}_{0}^{2}}{\mu_{0} \mathrm{c}^{2}} $ $\left(\because B_{0}=\frac{E_{0}}{c}\right)$
$=\frac{1}{4} \varepsilon_{0} \mathrm{E}_{0}^{2} $ $\left(\because c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}\right)$
$=\frac{1}{4} \times 8.854 \times 10^{-12} \times(2)^{2} $
$ \approx 8.86 \times 10^{-12} \mathrm{\,J} \mathrm{m}^{-3}$