The terminology of different parts of the electromagnetic spectrum is given in the text. Use the formula $E = hv$ (for energy of a quantum of radiation: photon) and obtain the photon energy in units of $eV$ for different parts of the electromagnetic spectrum. In what way are the different scales of photon energies that you obtain related to the sources of electromagnetic radiation?
Energy of a photon is given as:
$E=h v=\frac{h c}{\lambda}$
Where,
$h =$ Planck's constant $=6.6 \times 10^{-34} Js$
$c=$ Speed of light $=3 \times 10^{8} m / s$
$\lambda=$ Wavelength of radiation
$\therefore E=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{\lambda}$$=\frac{19.8 \times 10^{-26}}{\lambda} J$
$=\frac{19.8 \times 10^{-26}}{\lambda \times 1.6 \times 10^{-19}}=\frac{12.375 \times 10^{-7}}{\lambda} e V$
The given table lists the photon energies for different parts of an electromagnetic spectrum for different $\lambda$
$\begin{array}{|l|l|} \hline \lambda(m) & E ( eV ) \\ \hline 10^{3} & 12.375 \times 10^{-10} \\ \hline 1 & 12.375 \times 10^{-7} \\ \hline 10^{-3} & 12.375 \times 10^{-4} \\ \hline 10^{-6} & 12.375 \times 10^{-1} \\ \hline 10^{-8} & 12.375 \times 10^{1} \\ \hline 10^{-10} & 12.375 \times 10^{3} \\ \hline 10^{-12} & 12.375 \times 10^{5} \\ \hline \end{array}$
The photon energies for the different parts of the spectrum of a source indicate the spacing of the relevant energy levels of the source
Which of the following is $NOT$ true for electromagnetic waves ?
A radio can tune in to any station in the $7.5\; MHz$ to $12\; MHz$ band. What is the corresponding wavelength band?
The velocity of certain ions that pass undeflected through crossed electric field $E = 7.7\,k\,V /m$ and magnetic field $B = 0.14\,T$ is.....$km/s$
Select the correct statement from the following
Light wave traveling in air along $x$-direction is given by $E _{ y }=540 \sin \pi \times 10^{4}( x - ct ) Vm ^{-1}$. Then, the peak value of magnetic field of wave will be $\dots \times 10^{-7}\,T$ (Given $c =3 \times 10^{8}\,ms ^{-1}$ )