The terminology of different parts of the electromagnetic spectrum is given in the text. Use the formula $E = hv$ (for energy of a quantum of radiation: photon) and obtain the photon energy in units of $eV$ for different parts of the electromagnetic spectrum. In what way are the different scales of photon energies that you obtain related to the sources of electromagnetic radiation?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Energy of a photon is given as:

$E=h v=\frac{h c}{\lambda}$

Where,

$h =$ Planck's constant $=6.6 \times 10^{-34} Js$

$c=$ Speed of light $=3 \times 10^{8} m / s$

$\lambda=$ Wavelength of radiation

$\therefore E=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{\lambda}$$=\frac{19.8 \times 10^{-26}}{\lambda} J$

$=\frac{19.8 \times 10^{-26}}{\lambda \times 1.6 \times 10^{-19}}=\frac{12.375 \times 10^{-7}}{\lambda} e V$

The given table lists the photon energies for different parts of an electromagnetic spectrum for different $\lambda$

$\begin{array}{|l|l|} \hline \lambda(m) & E ( eV ) \\ \hline 10^{3} & 12.375 \times 10^{-10} \\ \hline 1 & 12.375 \times 10^{-7} \\ \hline 10^{-3} & 12.375 \times 10^{-4} \\ \hline 10^{-6} & 12.375 \times 10^{-1} \\ \hline 10^{-8} & 12.375 \times 10^{1} \\ \hline 10^{-10} & 12.375 \times 10^{3} \\ \hline 10^{-12} & 12.375 \times 10^{5} \\ \hline \end{array}$

The photon energies for the different parts of the spectrum of a source indicate the spacing of the relevant energy levels of the source

Similar Questions

The electric field part of an electromagnetic wave in a medium is represented by $E_x = 0\,;$

${E_y} = 2.5\,\frac{N}{C}\,\,\cos \,\left[ {\left( {2\pi \, \times \,{{10}^6}\,\frac{{rad}}{m}} \right)t - \left( {\pi  \times {{10}^{ - 2}}\frac{{rad}}{s}} \right)x} \right];$

$E_z = 0$. The wave is

Figure given shows the face of a cathode-ray oscilloscope tube, as viewed from in front. $i.e.$ the electron beam is coming out normally from the plane of the paper. The electron beam passes through a region where there are electric and magnetic fields directed as shown. The deflections of the spot from the center of the screen produced by the electric field $E$ and the magnetic field $B$ separately are equal in magnitude. Which one of the diagrams below shows a possible position of the spot on the screen when both fields are operating?

If the magnetic field of a plane electromagnetic wave is given by (The speed of light $ = 3 \times {10^8}\,m/s$ )

$B = 100 \times {10^{ - 6}}\,\sin \,\left[ {2\pi  \times 2 \times {{10}^{15}}\,\left( {t - \frac{x}{c}} \right)} \right]$ 

then the maximum electric field associated with it is

  • [JEE MAIN 2019]

For a plane electromagnetic wave propagating in $x$-direction, which one of the following combination gives the correct possible directions for electric field $(E)$ and magnetic field $(B)$ respectively?

  • [NEET 2021]

Nearly $10 \%$ of the power of a $110\,W$ light bulb is converted to visible radiation. The change in average intensities of visible radiation, at a distance of $1\, m$ from the bulb to a distance of $5\,m$ is $a \times 10^{-2}\,W / m ^{2}$. The value of ' $a$ ' will be.

  • [JEE MAIN 2022]