- Home
- Standard 12
- Physics
1. Electric Charges and Fields
normal
The electrostatic potential inside a charged spherical ball is given by $\phi = ar^2 + b$ where $r$ is the distance from the centre $a,\,b$ are constants. Then the charge density inside the ball is
A
$ - \,6a{\varepsilon _0}r$
B
$ - \,24\pi a{\varepsilon _0}$
C
$ - \,6a{\varepsilon _0}$
D
$ - \,24\pi a{\varepsilon _0}r$
Solution
Electric field, $E=-\frac{d \phi}{d t}=-2 a r$
By Gauss's theorem $E\left(4 \pi r^{2}\right)=\frac{q}{\varepsilon_{0}}$
$\Rightarrow q=-8 \pi \varepsilon_{0} a r^{3}$
$\rho=\frac{d q}{d V}=\frac{d q}{d r} \times \frac{d r}{d V}$
$=\left(-24 \pi \varepsilon_{0} a r^{2}\right)\left(\frac{1}{4 \pi r^{2}}\right)=-6 \varepsilon_{0} a$
Standard 12
Physics
Similar Questions
normal
normal
normal