The elongation of a wire on the surface of the earth is $10^{-4} \; m$. The same wire of same dimensions is elongated by $6 \times 10^{-5} \; m$ on another planet. The acceleration due to gravity on the planet will be $\dots \; ms ^{-2}$. (Take acceleration due to gravity on the surface of earth $=10 \; m / s ^{-2}$ )
$0$
$2$
$4$
$6$
When a weight of $10\, kg$ is suspended from a copper wire of length $3$ metres and diameter $0.4\, mm,$ its length increases by $2.4\, cm$. If the diameter of the wire is doubled, then the extension in its length will be ........ $cm$
Two wires of diameter $0.25 \;cm ,$ one made of steel and the other made of brass are loaded as shown in Figure. The unloaded length of steel wire is $1.5 \;m$ and that of brass wire is $1.0 \;m .$ Compute the elongations of the steel and the brass wires.
Read the following two statements below carefully and state, with reasons, if it is true or false.
$(a)$ The Young’s modulus of rubber is greater than that of steel;
$(b)$ The stretching of a coil is determined by its shear modulus.
Two rods of different materials having coefficients of linear expansion ${\alpha _1},\,{\alpha _2}$ and Young's moduli ${Y_1}$ and ${Y_2}$ respectively are fixed between two rigid massive walls. The rods are heated such that they undergo the same increase in temperature. There is no bending of rods. If ${\alpha _1}:{\alpha _2} = 2:3$, the thermal stresses developed in the two rods are equally provided ${Y_1}:{Y_2}$ is equal to
The edge of an aluminium cube is $10\; cm$ long. One face of the cube is firmly fixed to a vertical wall. A mass of $100 \;kg$ is then attached to the opposite face of the cube. The shear modulus of aluminium is $25\; GPa$. What is the vertical deflection of this face?