The ratio of the lengths of two wires $A$ and $B$ of same material is $1 : 2$ and the ratio of their diameter is $2 : 1.$ They are stretched by the same force, then the ratio of increase in length will be

  • A

    $2:1$

  • B

    $1:4$

  • C

    $1:8$

  • D

    $8:1$

Similar Questions

A pan with set of weights is attached with a light spring. When disturbed, the mass-spring system oscillates with a time period of $0.6$ $s.$ When some additional weights are added then time period is $0.7s.$ The extension caused by the additional weights is approximately given by ......... $cm$

According to Hook’s law of elasticity, if stress is increased, the ratio of stress to strain

  • [AIIMS 2001]

A copper wire of length $4.0m$ and area of cross-section $1.2\,c{m^2}$ is stretched with a force of $4.8 \times {10^3}$ $N.$ If Young’s modulus for copper is $1.2 \times {10^{11}}\,N/{m^2},$ the increase in the length of the wire will be

The elongation of a wire on the surface of the earth is $10^{-4} \; m$. The same wire of same dimensions is elongated by $6 \times 10^{-5} \; m$ on another planet. The acceleration due to gravity on the planet will be $\dots \; ms ^{-2}$. (Take acceleration due to gravity on the surface of earth $=10 \; m / s ^{-2}$ )

  • [JEE MAIN 2022]

In $CGS$ system, the Young's modulus of a steel wire is $2 \times {10^{12}}$. To double the length of a wire of unit cross-section area, the force required is