The energy of a charged capacitor resides in

  • A

    The electric field only

  • B

    The magnetic field only

  • C

    Both the electric and magnetic field

  • D

    Neither in electric nor magnetic field

Similar Questions

How much work is required to carry a $6$ $\mu C$ charge from the negative terminal to the positive terminal of a $9\, V$ battery

A parallel plate capacitor of capacitance $2\; F$ is charged to a potential $V$. The energy stored in the capacitor is $E_1$. The capacitor is now connected to another uncharged identical capacitor in parallel combination. The energy stored in the combination is $E _2$. The ratio $E _2 / E _1$ is

  • [JEE MAIN 2023]

A capacitor of capacitance $\mathrm{C}$ and potential $\mathrm{V}$ has energy $E$. It is connected to another capacitor of capacitance $2 \mathrm{C}$ and potential $2 \mathrm{~V}$. Then the loss of energy is $\frac{x}{3} E$, where $\mathrm{x}$ is____________.

  • [JEE MAIN 2024]

Two capacitors each of $1\,\mu F$ capacitance are connected in parallel and are then charged by $200\;volts$ $d.c.$ supply. The total energy of their charges (in $joules$) is

A capacitor of capacity $C$ is connected with a battery of potential $V$ in parallel. The distance between its plates is reduced to half at once, assuming that the charge remains the same. Then to charge the capacitance upto the potential $V$ again, the energy given by the battery will be