The equation $\frac{{dV}}{{dt}} = At - BV$ is describing the rate of change of velocity of a body falling from rest in a resisting medium. The dimensions of $A$ and $B$ are

  • A

    $LT^{-3}, T$

  • B

    $LT^{-3}, T^{-1}$

  • C

    $LT, T$

  • D

    $LT, T^{-1}$

Similar Questions

Let us consider a system of units in which mass and angular momentum are dimensionless. If length has dimension of $L$, which of the following statement ($s$) is/are correct ?

$(1)$ The dimension of force is $L ^{-3}$

$(2)$ The dimension of energy is $L ^{-2}$

$(3)$ The dimension of power is $L ^{-5}$

$(4)$ The dimension of linear momentum is $L ^{-1}$

  • [IIT 2019]

Electric field in a certain region is given by $\overrightarrow{ E }=\left(\frac{ A }{ x ^2} \hat{ i }+\frac{ B }{ y ^3} \hat{ j }\right)$. The $SI$ unit of $A$ and $B$ are

  • [JEE MAIN 2023]

A gas bubble from an explosion under water oscillates with a period proportional of $P^a\,d^b\,E^c$ where $P$ is the static pressure, $d$ is the density of water and $E$ is the energy of explosion. Then $a,\,b$ and $c$ are

If ${E}, {L}, {m}$ and ${G}$ denote the quantities as energy, angular momentum, mass and constant of gravitation respectively, then the dimensions of ${P}$ in the formula ${P}={EL}^{2} {m}^{-5} {G}^{-2}$ are

  • [JEE MAIN 2021]

If the units of force, energy and velocity are respectively $10\, N, 100\, J, 5\, m/s$, then  the units of length, mass and time will be