The dimension of stopping potential $\mathrm{V}_{0}$ in photoelectric effect in units of Planck's constant $h$, speed of light $c$ and Gravitational constant $G$ and ampere $A$ is
$\mathrm{h}^{2} \mathrm{G}^{3 / 2} \mathrm{C}^{1 / 3} \mathrm{A}^{-1}$
$\mathrm{h}^{-2 / 3} \mathrm{c}^{-1 / 3} \mathrm{G}^{4 / 3} \mathrm{A}^{-1}$
$\mathrm{h}^{1 / 3} \mathrm{G}^{2 / 3} \mathrm{c}^{1 / 3} \mathrm{A}^{-1}$
$\mathrm{h}^{0} \mathrm{c}^{5} \mathrm{G}^{-1} \mathrm{A}^{-1}$
Which pair has the same dimensions
The equation $\frac{{dV}}{{dt}} = At - BV$ is describing the rate of change of velocity of a body falling from rest in a resisting medium. The dimensions of $A$ and $B$ are
Dimensions of kinetic energy are
The $SI$ unit of energy is $J=k g\, m^{2} \,s^{-2} ;$ that of speed $v$ is $m s^{-1}$ and of acceleration $a$ is $m s ^{-2} .$ Which of the formulae for kinetic energy $(K)$ given below can you rule out on the basis of dimensional arguments ( $m$ stands for the mass of the body ):
$(a)$ $K=m^{2} v^{3}$
$(b)$ $K=(1 / 2) m v^{2}$
$(c)$ $K=m a$
$(d)$ $K=(3 / 16) m v^{2}$
$(e)$ $K=(1 / 2) m v^{2}+m a$
Write principle of Homogeneity of dimension.