The dimension of stopping potential $\mathrm{V}_{0}$ in photoelectric effect in units of Planck's constant $h$, speed of light $c$, Gravitational constant $G$ and ampere $A$ is

  • [JEE MAIN 2020]
  • A
    $\mathrm{h}^{2} \mathrm{G}^{3 / 2} \mathrm{C}^{1 / 3} \mathrm{A}^{-1}$
  • B
    $\mathrm{h}^{-2 / 3} \mathrm{c}^{-1 / 3} \mathrm{G}^{4 / 3} \mathrm{A}^{-1}$
  • C
    $\mathrm{h}^{1 / 3} \mathrm{G}^{2 / 3} \mathrm{c}^{1 / 3} \mathrm{A}^{-1}$
  • D
    $\mathrm{h}^{0} \mathrm{c}^{5} \mathrm{G}^{-1} \mathrm{A}^{-1}$

Similar Questions

Force $(F)$ and density $(d)$ are related as $F\, = \,\frac{\alpha }{{\beta \, + \,\sqrt d }}$ then dimension of $\alpha $ and $\beta$ are

Match List $I$ with List $II$
List $I$ List $II$
$A$ Torque  $I$ ${\left[\mathrm{M}^1 \mathrm{~L}^1 \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]}$
$B$ Magnetic fileld  $II$ $\left[\mathrm{L}^2 \mathrm{~A}^1\right]$
$C$ Magnetic moment $III$ ${\left[\mathrm{M}^1 \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]}$
$D$ Permeability of free  space $IV$ $\left[\mathrm{M}^1 \mathrm{~L}^2 \mathrm{~T}^{-2}\right]$
Choose the correct answer from the options given below :

  • [JEE MAIN 2024]

Given that $\int {{e^{ax}}\left. {dx} \right|}  = {a^m}{e^{ax}} + C$, then which statement is incorrect (Dimension of $x =  L^1$) ?

Match List$-I$ with List$-II$

List$-I$ List$-II$
$(a)$ $h$ (Planck's constant) $(i)$ $\left[ M L T ^{-1}\right]$
$(b)$ $E$ (kinetic energy) $(ii)$ $\left[ M L ^{2} T ^{-1}\right]$
$(c)$ $V$ (electric potential) $(iii)$ $\left[ M L ^{2} T ^{-2}\right]$
$(d)$ $P$ (linear momentum) $( iv )\left[ M L ^{2} I ^{-1} T ^{-3}\right]$

Choose the correct answer from the options given below

  • [JEE MAIN 2021]

If time $(t)$, velocity $(u)$, and angular momentum $(I)$ are taken as the fundamental units. Then the dimension of mass $({m})$ in terms of ${t}, {u}$ and ${I}$ is

  • [JEE MAIN 2021]