The velocity of a freely falling body changes as ${g^p}{h^q}$ where g is acceleration due to gravity and $h$ is the height. The values of $p$ and $q$ are

  • A

    $1,\frac{1}{2}$

  • B

    $\frac{1}{2},\frac{1}{2}$

  • C

    $\frac{1}{2},\,1$

  • D

    $1,\,1$

Similar Questions

A beaker contains a fluid of density $\rho \, kg / m^3$, specific heat $S\, J / kg\,^oC$ and viscosity $\eta $. The beaker is filled upto height $h$. To estimate the rate of heat transfer per unit area $(Q / A)$ by convection when beaker is put on a hot plate, a student proposes that it should depend on $\eta \,,\,\left( {\frac{{S\Delta \theta }}{h}} \right)$ and $\left( {\frac{1}{{\rho g}}} \right)$ when $\Delta \theta $ (in $^oC$) is the difference in the temperature between the bottom and top of the fluid. In that situation the correct option for $(Q / A)$ is

  • [JEE MAIN 2015]

In terms of basic units of mass $(M)$, length $(L)$, time $(T)$ and charge $(Q)$, the dimensions of magnetic permeability of vacuum $\left(\mu_0\right)$ would be

  • [AIIMS 2015]

A quantity $x$ is given by $\left( IF v^{2} / WL ^{4}\right)$ in terms of moment of inertia $I,$ force $F$, velocity $v$, work $W$ and Length $L$. The dimensional formula for $x$ is same as that of

  • [JEE MAIN 2020]

Let us consider an equation

$\frac{1}{2} m v^{2}=m g h$

where $m$ is the mass of the body. velocity, $g$ is the acceleration do gravity and $h$ is the height. whether this equation is dimensionally correct. 

Write principle of Homogeneity of dimension.