उस दीर्घवृत्त का समीकरण जिसकी उत्केन्द्रता $\frac{1}{2}$ और शीर्ष $(4, 0)$ तथा $(10, 0)$ हैं, होगा
$3{x^2} + 4{y^2} - 42x + 120 = 0$
$3{x^2} + 4{y^2} + 42x + 120 = 0$
$3{x^2} + 4{y^2} + 42x - 120 = 0$
$3{x^2} + 4{y^2} - 42x - 120 = 0$
यदि दीर्घवत्त $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ तथा वत्त $x^{2}+y^{2}=4 b$, $b >4$ के प्रतिच्छेदन बिन्दु वक्र $y ^{2}=3 x ^{2}$ पर स्थित हैं, तो $b$ बराबर है
माना दीर्धवृत्त $\frac{ x ^2}{ a ^2}+\frac{ y ^2}{4}=1, a > 2$, के अन्तर्गत, अधिकतम क्षेत्रफल वाले त्रिभुज का एक शीर्ष, दीर्घवत्त के दीर्घअक्ष के एक सिरे पर है तथा एक भुजा $y$-अक्ष के समान्तर है। यदि त्रिभुज का अधिकतम क्षेत्रफल $6 \sqrt{3}$ है तो दीर्घवृत्त की उत्केन्द्रता होगी :
दिये गए दीर्घवृत्त के दोनों शीर्ष तथा नाभि समान दूरी पर स्थित हैं। यदि ऐसे दीर्घवृत्त का अर्ध-लघु अक्ष $2 \sqrt{2}$ है तो अर्ध-दीर्घ अक्ष का मान होगा:
दीर्घवृत्त $3{x^2} + 2{y^2} = 5$ पर बिन्दु $(1, 2)$ से खींची गयीं स्पर्श रेखाओं के बीच कोण है
यदि एक दीर्घवृत्त की नाभियों के बीच की दूरी $6$ है तथा इसकी नियताओं के बीच की दूरी $12$ है, तो इसकी नाभिलम्ब जीवा की लम्बाई है