वृत्तों $2{x^2} + 2{y^2} - 7x = 0$ और ${x^2} + {y^2} - 4y - 7 = 0$ के मूलाक्ष (radical axis) का समीकरण होगा
$7x + 8y + 14 = 0$
$7x - 8y + 14 = 0$
$7x - 8y - 14 = 0$
इनमें से कोई नहीं
समाक्ष निकाय के तीन वृत्तों पर एक स्थिर बिन्दु से खींची गयी स्पर्शियों की लम्बाइयाँ ${t_1},{t_2},{t_3}$ हैं एवं यदि $P$, $Q$ व $R$ केन्द्र हों, तो $QRt_1^2 + RPt_2^2 + PQt_3^2 = $
वृत्तों ${x^2} + {y^2} - 8x - 2y + 7 = 0$ व ${x^2} + {y^2} - 4x + 10y + 8 = 0$ के प्रतिच्छेद बिन्दुओं एवं $(3, -3)$ से गुजरने वाले वृत्त का समीकरण है
दो वृत्त ${x^2} + {y^2} + ax + by + c = 0$ व ${x^2} + {y^2} + dx + ey + f = 0$ परस्पर समकोण पर प्रतिच्छेद करेंगे यदि
यदि दो वृत्तों के केन्द्रों के बीच की दूरी $d$, उनकी त्रिज्यायें ${r_1},{r_2}$ हों और $d = {r_1} + {r_2}$, तो
माना सभी पूर्णांकों का समुच्चय $Z$ है,
$A =\left\{( x , y ) \in Z \times Z :( x -2)^{2}+ y ^{2} \leq 4\right\}$
$B =\left\{( x , y ) \in Z \times Z : x ^{2}+ y ^{2} \leq 4\right\}$ तथा
$C =\left\{( x , y ) \in Z \times Z :( x -2)^{2}+( y -2)^{2} \leq 4\right\}$ है। यदि $A \cap B$ से $A \cap C$ में संबंधों की कुल संख्या $2^{ P }$ है, तो $p$ का मान है