If the line $y = mx + c$touches the ellipse $\frac{{{x^2}}}{{{b^2}}} + \frac{{{y^2}}}{{{a^2}}} = 1$, then $c = $

  • A

    $ \pm \sqrt {{b^2}{m^2} + {a^2}} $

  • B

    $ \pm \sqrt {{a^2}{m^2} + {b^2}} $

  • C

    $ \pm \sqrt {{b^2}{m^2} - {a^2}} $

  • D

    $ \pm \sqrt {{a^2}{m^2} - {b^2}} $

Similar Questions

The line passing through the extremity $A$ of the major axis and extremity $B$ of the minor axis of the ellipse $x^2+9 y^2=9$ meets its auxiliary circle at the point $M$. Then the area of the triangle with vertices at $A, M$ and the origin $O$ is

  • [IIT 2009]

Locus of the foot of the perpendicular drawn from the centre upon any tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, is

If the normal at one end of the latus rectum of an ellipse  $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ passes through one end of the minor axis then :

If $OB$ is the semi-minor axis of an ellipse, $F_1$ and $F_2$ are its foci and the angle between $F_1B$ and $F_2B$ is a right angle, then the square of the eccentricity of the ellipse is

  • [JEE MAIN 2014]

The foci of the ellipse $25{(x + 1)^2} + 9{(y + 2)^2} = 225$ are at