જેનું મધ્યબિંદુ $(3,1)$ હોય, તેવી ઉપવલય $\frac{x^2}{25}+\frac{y^2}{16}=1$ ની જીવાનું સમીક૨ણ ______ છે.

  • [JEE MAIN 2025]
  • A
    $48 x+25 y=169$
  • B
    $4 x+122 y=134$
  • C
    $25 x+101 y=176$
  • D
    $5 x+16 y=31$

Similar Questions

પ્રથમ ચરણમાં રેખા $y=m x$ અને ઉપવલય $2 x^{2}+y^{2}=1$ બિંદુ $\mathrm{P}$ આગળ છેદે છે . જો બિંદુ $P$ આગળનો અભિલંભ અક્ષોને $\left(-\frac{1}{3 \sqrt{2}}, 0\right)$ અને $(0, \beta)$ આગળ છેદે છે તો $\beta$ મેળવો.

  • [JEE MAIN 2020]

શાંકવ $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,\,$ ને રેખા $x\cos \alpha \,\, + \,y\sin \,\alpha \,\, = \,p\,\,$ ક્યારે સ્પર્શશે?

ઉપવલયની પ્રધાન અક્ષના અંત્યબિંદુ $A$ અને ગૌણ અક્ષના અંત્યબિંદુ $B$ માંથી પસાર થતી રેખા તેના સહાયક વૃતને બિંદુ $M$ આગળ સ્પર્શેં છે તો $A, M$ અને ઉગમ બિંદુ $O$ આગળ શિરોબિંદુવાળા ત્રિકોણનું ક્ષેત્રફળ-

જો ઉપવલય $\frac{{{{\text{x}}^{\text{2}}}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,\,\,$ ની નાભિઓ,  અતિવલય $\frac{{{x^2}}}{{144}}\,\, - \,\,\frac{{{y^2}}}{{81}}\,\, = \,\,\frac{1}{{25}}$ ની નાભિઓને સમાન હોય,તો ${b^2}\, = \,\,...........$

ધારોકે રેખા $2 x+3 y-\mathrm{k}=0, \mathrm{k}>0$ એ $x$-અક્ષ અને $y$-અક્ષ ને અનુક્રમે બિંદુઓ $A$ અને $B$ માં છેદે છે. જો રેખા ખંડ $A B$ ને વ્યાસ તરીકે લેતા બનતા વર્તુળ સમીકરણ $x^2+y^2-3 x-2 y=0$ હોય અને ઉપવલય $x^2+9 y^2=\mathrm{k}^2$ ના નાભિલંબ ની લંબાઈ $\frac{\mathrm{m}}{\mathrm{n}}$ હોય, જ્યાં $m$ અને $n$ પરસ્પર અવિભાજય છે, તો $2 m+n=$ ...........

  • [JEE MAIN 2024]