ઉપવલય ${x^2} + 4{y^2} = 4$ એ અક્ષોને સમાંતર લંબચોરસને અંદર સ્પર્શે છે.જો આ લંબચોરસ એ બિંદુ $(4,0) $ માંથી પસાર થતા બીજા ઉપવલયને અંદરથી સ્પશતું હોય તેા આ ઉપવલયનું સમીકરણ મેળવો.
$\;{x^2} + 12{y^2} = 16$
$\;4{x^2} + 48{y^2} = 48$
$\;4{x^2} + 64{y^2} = 48$
$\;{x^2} + 16{y^2} = 16$
વક્રો $y^2=2 x$ અને $x^2+y^2=4 x$ પરના બિંદુુ $(2,2)$ આગળના સ્પર્શકો, તથા રેખા $x+y+2=0$ દ્વારા એક ત્રિકીણ રચવામાં આવે છે. જો તેના પરિવૃત્તની ત્રિજ્યા $r$ હોય, તી $r^2=.............$
ઉગમબિંદુમાંથી પસાર થતા અને બિંદુઓ $(1, 0)$ અને $(3, 0)$ આગળ નાભિઓ ધરાવતા ઉપવલયનું સમીકરણ .....
ધારો કે $L$ એ વક્રો $4 x^{2}+9 y^{2}=36$ અને $(2 x)^{2}+(2 y)^{2}=31$ ની સામાન્ય સ્પર્શરેખા છે. તો રેખા $L$ ના ઢાળનો વર્ગ ....... થાય.
ઉપવલયના પ્રમાણિત સમીકરણ ($y-$અક્ષ પ્રત્યે) માં ગૌણ અક્ષની લંબાઈ $\frac{4}{\sqrt{3}} $ છે. તો ઉપવલય રેખા $x+6 y=8 $ સ્પર્શે છે તો ઉકેન્દ્રીતા મેળવો.
જે ઉપવલયનું એક શિરોબિંદુ $(0, 7)$ હોય અને નિયામિકા $y = 12 $ હોય, તે ઉપવલયનું સમીકરણ....