The equation of the ellipse referred to its axes as the axes of coordinates with latus rectum of length $4$ and distance between foci $4 \sqrt 2$ is-
$x^2 + 2y^2 = 24$
$2x^2 + y^2 = 24$
$x^2 + 2y^2 = 16$
$2x^2 + y^2 = 16$
Let a tangent to the Curve $9 x^2+16 y^2=144$ intersect the coordinate axes at the points $A$ and $B$. Then, the minimum length of the line segment $A B$ is $.........$
The equation of the normal to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ at the point $(a\cos \theta ,\;b\sin \theta )$ is
The centre of an ellipse is $C$ and $PN$ is any ordinate and $A$, $A’$ are the end points of major axis, then the value of $\frac{{P{N^2}}}{{AN\;.\;A'N}}$ is
The locus of mid-points of the line segments joining $(-3,-5)$ and the points on the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ is :
The angle between the pair of tangents drawn to the ellipse $3{x^2} + 2{y^2} = 5$ from the point $(1, 2)$, is