Let $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$ be an ellipse, whose eccentricity is $\frac{1}{\sqrt{2}}$ and the length of the latus rectum is $\sqrt{14}$. Then the square of the eccentricity of $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is :

  • [JEE MAIN 2024]
  • A

    $3$

  • B

    $7 / 2$

  • C

     $3 / 2$

  • D

    $5 / 2$

Similar Questions

The eccentricity of an ellipse is $2/3$, latus rectum is $5$ and centre is $(0, 0)$. The equation of the ellipse is

Let $P$ be a point on the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$. Let the line passing through $P$ and parallel to $y$-axis meet the circle $x^2+y^2=9$ at point $Q$ such that $P$ and $Q$ are on the same side of the $x$-axis. Then, the eccentricity of the locus of the point $R$ on $P Q$ such that $P R: R Q=4: 3$ as $P$ moves on the ellipse, is :

  • [JEE MAIN 2024]

Let $P \left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), Q , R$ and $S$ be four points on the ellipse $9 x^2+4 y^2=36$. Let $P Q$ and $RS$ be mutually perpendicular and pass through the origin. If $\frac{1}{( PQ )^2}+\frac{1}{( RS )^2}=\frac{ p }{ q }$, where $p$ and $q$ are coprime, then $p+q$ is equal to $.........$.

  • [JEE MAIN 2023]

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $36 x^{2}+4 y^{2}=144$

A point on the ellipse, $4x^2 + 9y^2 = 36$, where the normal is parallel to the line, $4x -2y-5 = 0$ , is

  • [JEE MAIN 2013]