10-2. Parabola, Ellipse, Hyperbola
medium

Let $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$ be an ellipse, whose eccentricity is $\frac{1}{\sqrt{2}}$ and the length of the latus rectum is $\sqrt{14}$. Then the square of the eccentricity of $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is :

A

$3$

B

$7 / 2$

C

 $3 / 2$

D

$5 / 2$

(JEE MAIN-2024)

Solution

$e=\frac{1}{\sqrt{2}}=\sqrt{1-\frac{b^2}{a^2}} \Rightarrow \frac{1}{2}=1-\frac{b^2}{a^2}$

$\frac{2 b^2}{a}=14$

$e_H=\sqrt{1+\frac{b^2}{a^2}}=\sqrt{1+\frac{1}{2}}=\sqrt{\frac{3}{2}}$

$\left(e_H\right)^2=\frac{3}{2}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.