Let $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$ be an ellipse, whose eccentricity is $\frac{1}{\sqrt{2}}$ and the length of the latus rectum is $\sqrt{14}$. Then the square of the eccentricity of $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is :

  • [JEE MAIN 2024]
  • A

    $3$

  • B

    $7 / 2$

  • C

     $3 / 2$

  • D

    $5 / 2$

Similar Questions

The equations of the directrices of the ellipse $16{x^2} + 25{y^2} = 400$ are

A man running round a race-course notes that the sum of the distance of two flag-posts from him is always $10\ metres$ and the distance between the flag-posts is $8\ metres$. The area of the path he encloses in square metres is

Find the equation for the ellipse that satisfies the given conditions: $b=3,\,\, c=4,$ centre at the origin; foci on the $x$ axis.

The equation of an ellipse whose focus $(-1, 1)$, whose directrix is $x - y + 3 = 0$ and whose eccentricity is $\frac{1}{2}$, is given by

If tangents are drawn from point $P(3\ sin\theta + 4\ cos\theta , 3\ cos\theta\ -\ 4\ sin\theta)$ , $\theta = \frac {\pi}{8}$ to the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$ then angle between the tangents is