The distance between the focii of the ellipse $(3x - 9)^2 + 9y^2 =(\sqrt 2 x + y +1)^2$ is-
$(3{ \sqrt 2 }-1)$
$\frac{{(3\sqrt 2 + 1) }}{{\sqrt 3 }}$
${(3\sqrt 2 + 1) }$
$\frac{{(3\sqrt 2 + 1) }}{{4\sqrt 3 }}$
The equation of the tangent to the ellipse ${x^2} + 16{y^2} = 16$ making an angle of ${60^o}$ with $x$ - axis is
Consider two straight lines, each of which is tangent to both the circle $x ^2+ y ^2=\frac{1}{2}$ and the parabola $y^2=4 x$. Let these lines intersect at the point $Q$. Consider the ellipse whose center is at the origin $O (0,0)$ and whose semi-major axis is $OQ$. If the length of the minor axis of this ellipse is $\sqrt{2}$, then which of the following statement($s$) is (are) $TRUE$?
$(A)$ For the ellipse, the eccentricity is $\frac{1}{\sqrt{2}}$ and the length of the latus rectum is $1$
$(B)$ For the ellipse, the eccentricity is $\frac{1}{2}$ and the length of the latus rectum is $\frac{1}{2}$
$(C)$ The area of the region bounded by the ellipse between the lines $x=\frac{1}{\sqrt{2}}$ and $x=1$ is $\frac{1}{4 \sqrt{2}}(\pi-2)$
$(D)$ The area of the region bounded by the ellipse between the lines $x=\frac{1}{\sqrt{2}}$ and $x=1$ is $\frac{1}{16}(\pi-2)$
In a triangle $A B C$ with fixed base $B C$, the vertex $A$ moves such that $\cos B+\cos C=4 \sin ^2 \frac{A}{2} .$ If $a, b$ and $c$ denote the lengths of the sides of the triangle opposite to the angles $A, B$ and $C$, respectively, then
$(A)$ $b+c=4 a$
$(B)$ $b+c=2 a$
$(C)$ locus of point $A$ is an ellipse
$(D)$ locus of point $A$ is a pair of straight lines
An arch is in the form of a semi-cllipse. It is $8 \,m$ wide and $2 \,m$ high at the centre. Find the height of the arch at a point $1.5\, m$ from one end.
The ellipse $E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$ is inscribed in a rectangle $R$ whose sides are parallel to the coordinate axes.
Another ellipse $E _2$ passing through the point $(0,4)$ circumscribes the rectangle $R$.. The eccentricity of the ellipse $E _2$ is