The equation of the hyperbola referred to the axis as axes of co-ordinate and whose distance between the foci is $16$ and eccentricity is $\sqrt 2 $, is
${x^2} - {y^2} = 16$
${x^2} - {y^2} = 32$
${x^2} - 2{y^2} = 16$
${y^2} - {x^2} = 16$
The vertices of a hyperbola $H$ are $(\pm 6,0)$ and its eccentricity is $\frac{\sqrt{5}}{2}$. Let $N$ be the normal to $H$ at a point in the first quadrant and parallel to the line $\sqrt{2} x + y =2 \sqrt{2}$. If $d$ is the length of the line segment of $N$ between $H$ and the $y$-axis then $d ^2$ is equal to $............$.
Curve $xy = {c^2}$ is said to be
A hyperbola has its centre at the origin, passes through the point $(4, 2)$ and has transverse axis of length $4$ along the $x -$ axis. Then the eccentricity of the hyperbola is
Consider the hyperbola
$\frac{x^2}{100}-\frac{y^2}{64}=1$
with foci at $S$ and $S_1$, where $S$ lies on the positive $x$-axis. Let $P$ be a point on the hyperbola, in the first quadrant. Let $\angle SPS _1=\alpha$, with $\alpha<\frac{\pi}{2}$. The straight line passing through the point $S$ and having the same slope as that of the tangent at $P$ to the hyperbola, intersects the straight line $S_1 P$ at $P_1$. Let $\delta$ be the distance of $P$ from the straight line $SP _1$, and $\beta= S _1 P$. Then the greatest integer less than or equal to $\frac{\beta \delta}{9} \sin \frac{\alpha}{2}$ is. . . . . . .
The combined equation of the asymptotes of the hyperbola $2{x^2} + 5xy + 2{y^2} + 4x + 5y = 0$