The equation of the tangent to the conic ${x^2} - {y^2} - 8x + 2y + 11 = 0$ at $(2, 1)$ is
$x + 2 = 0$
$2x + 1 = 0$
$x - 2 = 0$
$x + y + 1 = 0$
If a circle cuts a rectangular hyperbola $xy = {c^2}$ in $A, B, C, D$ and the parameters of these four points be ${t_1},\;{t_2},\;{t_3}$ and ${t_4}$ respectively. Then
The locus of the mid points of the chords of the hyperbola $\mathrm{x}^{2}-\mathrm{y}^{2}=4$, which touch the parabola $\mathrm{y}^{2}=8 \mathrm{x}$, is :
The foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ and the hyperbola $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$ coincide. Then the value of $b^2$ is -
The eccentricity of the hyperbola $\frac{{\sqrt {1999} }}{3}({x^2} - {y^2}) = 1$ is
Consider the hyperbola
$\frac{x^2}{100}-\frac{y^2}{64}=1$
with foci at $S$ and $S_1$, where $S$ lies on the positive $x$-axis. Let $P$ be a point on the hyperbola, in the first quadrant. Let $\angle SPS _1=\alpha$, with $\alpha<\frac{\pi}{2}$. The straight line passing through the point $S$ and having the same slope as that of the tangent at $P$ to the hyperbola, intersects the straight line $S_1 P$ at $P_1$. Let $\delta$ be the distance of $P$ from the straight line $SP _1$, and $\beta= S _1 P$. Then the greatest integer less than or equal to $\frac{\beta \delta}{9} \sin \frac{\alpha}{2}$ is. . . . . . .