The equation of the tangent to the conic ${x^2} - {y^2} - 8x + 2y + 11 = 0$ at $(2, 1)$ is

  • A

    $x + 2 = 0$

  • B

    $2x + 1 = 0$

  • C

    $x - 2 = 0$

  • D

    $x + y + 1 = 0$

Similar Questions

Find the equation of the hyperbola satisfying the give conditions : Vertices $(\pm 7,\,0)$,  $e=\frac{4}{3}$

Let the equation of two diameters of a circle $x ^{2}+ y ^{2}$ $-2 x +2 fy +1=0$ be $2 px - y =1$ and $2 x + py =4 p$. Then the slope $m \in(0, \infty)$ of the tangent to the hyperbola $3 x^{2}-y^{2}=3$ passing through the centre of the circle is equal to $......$

  • [JEE MAIN 2022]

Let the eccentricity of an ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ is reciprocal to that of the hyperbola $2 x^2-2 y^2=1$. If the ellipse intersects the hyperbola at right angles, then square of length of the latus-rectum of the ellipse is $................$.

  • [JEE MAIN 2023]

If $2 x-y+1=0$ is a tangent to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{16}=1$, then which of the following $CANNOT$ be sides of a right angled triangle?

$[A]$ $2 a, 4,1$   $[B]$ $2 a, 8,1$   $[C]$ $a, 4,1$    $[D]$ $a, 4,2$

  • [IIT 2017]

If ${m_1}$ and ${m_2}$are the slopes of the tangents to the hyperbola $\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{{16}} = 1$ which pass through the point $(6, 2)$, then