The equations of the tangents to the circle ${x^2} + {y^2} - 6x + 4y = 12$ which are parallel to the straight line $4x + 3y + 5 = 0$, are

  • A

    $3x - 4y - 19 = 0,\,\,3x - 4y + 31 = 0$

  • B

    $4x + 3y - 19 = 0,\,\,4x + 3y + 31 = 0$

  • C

    $4x + 3y + 19 = 0,\,\,4x + 3y - 31 = 0$

  • D

    $3x - 4y + 19 = 0,3x - 4y + 31 = 0$

Similar Questions

Tangent to the circle $x^2 + y^2$ = $5$ at the point $(1, -2)$ also touches the circle $x^2 + y^2 -8x + 6y + 20$ = $0$ . Then its point of contact is 

Point $M$ moved along the circle $(x - 4)^2 + (y - 8)^2 = 20 $. Then it broke away from it and moving along a tangent to the circle, cuts the $x-$ axis at the point $(- 2, 0)$ . The co-ordinates of the point on the circle at which the moving point broke away can be :

The line $3x - 2y = k$ meets the circle ${x^2} + {y^2} = 4{r^2}$ at only one point, if ${k^2}$=

A circle with centre $'P'$ is tangent to negative $x$ & $y$ axis and externally tangent to a circle with centre $(-6,0)$ and radius $2$ . What is the sum of all possible radii of the circle with centre $P$ ?

The equation of three circles are ${x^2} + {y^2} - 12x - 16y + 64 = 0,$ $3{x^2} + 3{y^2} - 36x + 81 = 0$ and ${x^2} + {y^2} - 16x + 81 = 0.$ The co-ordinates of the point from which the length of tangent drawn to each of the three circle is equal is